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Abstract—Uncertain graph management has been recognized as an important research topic in recent years. In this paper, we first

introduce two types of query evaluation problems on uncertain graphs, named expectation query evaluation and threshold query

evaluation. Most previous solutions for these problems are based on naive Monte-Carlo (NMC) sampling, which typically result in large

variances. To reduce the variance of NMC, we propose two efficient estimators, called RSS-I and RSS-II estimators, based on the idea

of recursive stratified sampling (RSS). To further reduce the variances of RSS-I and RSS-II, we propose a recursive cut-set based

stratified sampling estimator for a particular kind of query evaluation problem. We show that all the proposed estimators are unbiased

and their variances are significantly smaller than that of NMC. Moreover, the time complexity of all the proposed estimators are the

same as that of NMC under a mild assumption. In addition, we develop an elegant graph simplification technique to further improve the

accuracy and running time of our estimators. We also apply the proposed estimators to three different uncertain graph query evaluation

problems. Finally, we conduct extensive experiments to evaluate the proposed estimators, and the results show the accuracy,

efficiency, and scalability of our estimators.

Index Terms—Uncertain graphs, query evaluation, recursive stratified sampling, graph simplification
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1 INTRODUCTION

UNCERTAIN graphmanagement andmining has attracted
much attention in recent years [1], [2], [3], [4]. In a

widely-used uncertain graph model, each edge is associated
with a probability representing the likelihood of the exis-
tence of an edge, and the existence of an edge is independent
of that of any other edge [2], [3]. This model allows us to
study the uncertain graph problems via the possible graph
semantics [1], [2], [3]. Here a possible graph G is an instance
of the uncertain graph G, which is generated by sampling
each edge in G. Fig. 1a depicts an uncertain graph G and
Fig. 1b illustrates a possible graph G of G. Such an uncertain
graph model is very useful to model the interaction between
two nodes with uncertainty. There are many network-
related applications that inherently involve uncertainty. In
protein-protein interaction networks, the interaction is typi-
cally predicted by statistical models [5], [6], thereby the
existence of an interaction is associated with a probability.
In communication networks, the link is often associated with

a failure probability [7]. In social networks, the social influ-
ence between two nodes is very often modeled by an influ-
ence probability [8], [9].

In uncertain graph management, a fundamental problem
is to evaluate the queries efficiently and accurately. In this
paper, we introduce two types of query evaluation prob-
lems in uncertain graphs, called expectation query evalua-
tion and threshold query evaluation. Given an uncertain
graph G, a query q, and a query evaluation function fqðGÞ
defined on the possible graph G, the expectation query eval-
uation problem is a problem of evaluating the expected
value of fqðGÞ over all the possible graphs of G. The thresh-

old query evaluation is to evaluate the probability of an
event that the value of fqðGÞ is greater (or less) than a given

threshold d. Many applications of uncertain graph manage-
ment can be formulated as these two query evaluation prob-
lems. For instance, the classic network reliability problem
[10] is an instance of the expectation query evaluation prob-
lem, where the query is a set of k nodes and the query evalu-
ation function is a binary function used to evaluate the
connectedness of the induced k-subgraph. The expected-
reliable distance (ERD) query problem introduced in [2] is
a special instance of the expectation query evaluation prob-
lem, where the query is two given nodes and the evaluation
function is the length of the shortest path between this
two query nodes. The influence function evaluation (IFE)
problem studied in the influence maximization literature
[8], [11] is also an instance of the expectation query evalua-
tion problem, where the query is a set of seed nodes and
the query evaluation function is the number of nodes that
can be reachable from the seed nodes. The distance-
constraint reachability (DCR) problem [3] is an instance of
the threshold query evaluation problem, where the query is
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two nodes, the threshold is the distance-constraint, and
the query evaluation function is a binary function used to
evaluate the reachability between two nodes subject to
distance constraint.

In general, all the above mentioned expectation and
threshold query evaluation problems are known to be #P-
complete, thus there is no polynomial algorithm to exactly
solve them unless P=#P. As a result, most existing algo-
rithms for query evaluation problems are based on naive
Monte-Carlo (NMC) estimator [2], [10]. Specifically, the
NMC estimator first draws N possible graphs, and then
computes the query evaluation function on each possible
graph. Finally, it takes the average value of the query evalu-
ation function as the estimator. However, as discussed in
[3], [10], the NMC estimator typically results in a large vari-
ance. Therefore, to achieve a good accuracy, the NMC esti-
mator has to pick a large number of samples (possible
graphs). In an uncertain graph, getting a sample needs to
flip m coins to determine all them edges of the graph. Thus,
the NMC estimator is very expensive to obtain a good
approximation for the query evaluation problems.

To reduce the variance of the NMC estimator, in this
paper, we propose two classes of efficient estimators,
named RSS-I and RSS-II estimators, based on the idea of
recursive stratified sampling (RSS). Specifically, to obtain
the RSS-I estimator, we first propose a basic stratified sam-
pling estimator called BSS-I. BSS-I partitions the probability
space V (the set of all the possible graphs) into 2r subspaces
by enumerating all the statuses (0 or 1) of r selected edges.1

Let each subspace be a stratum. Then, BSS-I draws samples
separately from each stratum. By carefully allocating the
sample size for each stratum, we show that the variance of
the BSS-I estimator is smaller than that of NMC. Based on
BSS-I, we develop the RSS-I estimator by recursively apply-
ing BSS-I in each stratum. Since RSS-I recursively reduces
the variance in each stratum, its variance is significantly
smaller than that of BSS-I. Similarly, to obtain the RSS-II
estimator, we also propose a new basic stratified sampling
estimator, called BSS-II estimator, and then recursively
apply BSS-II in each stratum. Unlike BSS-I and RSS-I, we
develop a new stratification method for BSS-II and RSS-II
which splits the probability space V into rþ 1 strata by
selecting r edges. Compared to the stratification method
used in BSS-I and RSS-I, the advantage of this method is
that we can finely tune the number of strata by parameter r,
because it only produces rþ 1 strata. We show that all these
estimators are unbiased and their variances are significantly

smaller than that of NMC. In addition, an important feature
of our estimators is that they have the same time complexity
as NMC under a mild assumption, satisfying in most real-
world applications.

The proposed estimators are very general which can be
used as a building block for most query evaluation on
uncertain graph problems. However, these methods do not
exploit the graph structure information and the property of
the query evaluation function as well. To capture these
information, we further propose a basic cut-set based strati-
fied sampling estimator and a recursive cut-set based
stratified sampling estimator, called BCSS and RCSS respec-
tively, for a particular kind of query evaluation problem
where the query evaluation function has a cut-set property.
The detailed definition of cut set can be found in Section 5.3.
We prove that both BCSS and RCSS are unbiased and their
variances are significantly smaller than that of NMC. Fur-
thermore, in many applications, we show that the time com-
plexity of BCSS and RCSS estimators are the same as that of
NMC. In addition, we integrate a new graph simplification
technique into all the proposed estimators, and show that
the graph simplification technique not only significantly
improves the accuracy, but it also shortens the running time
of our estimators. We also apply the proposed estimators to
the influence function evaluation, the expected-reliable dis-
tance query, as well as the distance-constraint reachability
query, which are the instances of our query evaluation
problems. Finally, we conduct extensive experiments to
evaluate the proposed estimators. The results show that the
proposed recursive stratified estimators with graph simpli-
fication technique significantly outperform the state-of-the-
art estimator. Moreover, we find that the RCSS estimators
can improve the accuracy over both RSS-I and RSS-II esti-
mators. The results also show that our best estimators scale
linearly w.r.t. the graph size, thus they can be used to han-
dle large graphs.

The rest of this paper is organized as follows. We formu-
late the query evaluation problems in Section 2. We propose
the RSS-I and RSS-II estimators with graph simplification
technique in Section 3 and Section 4 respectively. The BCSS
and RCSS estimators are presented in Section 5.3. We apply
our estimators with graph simplification technique to three
different uncertain graph queries in Section 6, and report the
experimental results in Section 7. We discuss the related
work in Section 8. Finally, we conclude thiswork in Section 9.

2 PROBLEM FORMULATION

Consider an uncertain graph G ¼ ðV;E; P Þ with jV j ¼ n and
jEj ¼ m, where V and E denote the set of nodes and edges
respectively. P is a set of probabilities representing the like-
lihoods of the existence of edges, i.e., pe denotes the proba-
bility of e 2 E. In this paper, we adopt a widely-used
uncertain graph model where the existence of an edge is
independent of that of any other edge [2], [3]. Let
G ¼ ðVG;EGÞ be a possible graph which is obtained by sam-
pling each edge e in G following the probability pe. Obvi-
ously, V ¼ VG, EG � E, and the probability of G is given by

Pr½G� ¼
Y

e2EG
pe

Y
e2EnEG

ð1� peÞ: (1)

Fig. 1. Illustration of an uncertain graph.

1. Here the status of an edge is 1 denoting the edge exists in the pos-
sible graph, and 0 otherwise. Thus, for r edges, there are 2r different
cases.
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Consider an example in Fig. 1. Fig. 1a shows an uncertain
graph with five nodes and eight edges and Fig. 1b illustrates
a possible graph G of Gwith probability 0:001944.

Given an uncertain graph G, a query q, and a query eval-
uation function fqðGÞ defined on the possible graph G. We

define two types of query evaluation problems as follows.

Definition 2.1 (Expectation query evaluation). The expecta-
tion query evaluation problem is a problem of computing the
expected value of fqðGÞ over all the possible graphs, which is
given by

FqðGÞ ¼
X
G2V

Pr½G�fqðGÞ; (2)

where V denotes the set of all possible graphs of G.
Definition 2.2 (Threshold query evaluation). Given a thresh-

old d, the threshold query evaluation problem is a problem of
calculating the following expected value

IqðGÞ ¼
X

G2V Pr½G�IqðGÞ; (3)

where IqðGÞ is an indicator variable. More specifically, IqðGÞ is
defined by

IqðGÞ ¼ 1; if C ðfqðGÞ; dÞ ¼ 1
0; otherwise

;

�
(4)

where C ðfqðGÞ; dÞ is a binary comparison function.

Note that the comparison function C ðfqðGÞ; dÞ in Eq. (4) is
used to compare the query evaluation function fqðGÞ with

the given threshold d. For example, the comparison function
can be a “�” function, i.e., C ðfqðGÞ; dÞ ¼ 1 if fqðGÞ � d, and

C ðfqðGÞ; dÞ ¼ 0 otherwise.

As discussed in Section 1, many uncertain graph prob-
lems, such as network reliability estimation [10], expected-
reliable distance query [2], distance-constraint reachability
computation [3] and influence function evaluation [8], [11],
can be formulated as the above two query evaluation prob-
lems. In general, all aforementioned query evaluation prob-
lems are known to be #P-complete, thus there does not exist
a polynomial algorithm to exactly solve them unless P=#P.
Hence, most existing algorithms for these problems are
based on a naive Monte-Carlo estimator [2], [8], [10], [11]. In
the rest of this paper, we mainly focus on the expectation
query, and similar techniques can be easily generalized to
the threshold query.

To estimate the expectation query FqðGÞ, the NMC algo-
rithm first draws N possible graphs denoted by
G1; G2; � � � ; GN from G. Then, for each possible graph Gi, the
NMC algorithm calculates the query evaluation function

fqðGiÞ. Finally, the NMC estimator (denoted by F̂NMC) is

obtained by taking the mean of fqðGiÞ (i ¼ 1; 2; . . . ; N), i.e.,

F̂NMC ¼
PN

i¼1 fqðGiÞ=N . The NMC estimator is unbiased

and its variance is given by

varðF̂NMCÞ ¼
X
GP2V

Pr½GP �fqðGÞ2 �FqðGÞ2
" #.

N: (5)

Assume that computing fqðGiÞ takes OðMÞ time. Then, we
can easily derive that the time complexity of NMC is
OðNðmþMÞÞ.

An important metric to evaluate the accuracy of the
Monte-Carlo based algorithm is the mean squared error
(MSE) which is denoted by E½ðF̂qðGÞ �FqðGÞÞ2�, where

F̂qðGÞ denotes an estimator of FqðGÞ by the Monte-Carlo
based algorithm. By the so-called variance-bias decomposi-
tion [3], this metric can be decomposed into two parts.

E½ðF̂qðGÞ �FqðGÞÞ2� ¼ var½F̂qðGÞ� þ ½E½F̂qðGÞ� �FqðGÞ�2;
(6)

where E½F̂qðGÞ� and var½F̂qðGÞ� denote the expectation and

variance of the estimator F̂qðGÞ respectively. If the estimator
is unbiased, then the second term in Eq. (6) will be vanished.
Therefore, the variance of an unbiased estimator is the only
indicator for evaluating the accuracy of the estimator.

As discussed in [3], [10], the NMC estimator typically
results in a large variance, which significantly reduces its
accuracy. An effective approach to improve the accuracy of
NMC is to reduce its variance. To that end, in the following
sections, we shall propose several new estimators based on
stratified sampling [12] without sacrificing efficiency.

3 NEW CLASS-I ESTIMATORS

To reduce the variance of NMC, in this section, we propose
two stratified sampling estimators for expectation query
evaluation, called BSS-I and RSS-I estimators. The RSS-I
estimator is based on the idea of recursive stratified sam-
pling which recursively applies BSS-I in each stratum. For
convenience, we refer to both BSS-I and RSS-I as the class-I
estimators. Below, we first introduce the BSS-I estimator,
followed by the RSS-I estimator.

3.1 Basic Stratified Sampling (BSS-I)

Unlike NMC which draws a sample (a possible graph) from
the entire population (all the possible graphs), the stratified
sampling method [12] first divides the population into sev-
eral disjoint groups called strata, and then independently
picks separate samples from these groups. As a commonly
used technique for reducing variance in sampling design
[12], there are two key technical challenges in stratified sam-
pling: stratification, which is a process for partitioning the
entire population into disjoint strata, and sample allocation,
which is a procedure to determine the sample size that
needs to be drawn from each stratum. Below, we will pres-
ent our stratification and sample allocation methods.

Stratification. Let ei (i ¼ 1; . . . ;m) be an edge in an uncer-
tain graph G. First, we choose r edges (e1; . . . ; er) and deter-
mine their statuses (0 or 1), where r is a small number. For
the rest m� r edges, we set their statuses to � which means
that “their statuses are undetermined”. Note that this pro-
cess partitions the entire probability space V (i.e., the set of
all possible graphs) into 2r subspaces V1; . . . ;V2r . Second,
we let each subspace be a stratum. This is because

V1; . . . ;V2r are disjoint sets and V ¼ S 2r

i¼1Vi, thus each
subspace is indeed a valid stratum. The idea of our stratifi-
cation method is illustrated in Table 1.

Let T ¼ ðe1; e2; . . . ; erÞ be the set of selected r edges, and
Xi ¼ ðXi;1; Xi;2; . . . ; Xi;rÞ be the status vector corresponding
to the selected r edges in Stratum i, where Xi;j ¼ 0 repre-
sents that the edge ej is failed, and Xi;j ¼ 1 denotes that the
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edge ej exists. For example, for Stratum 1 in Table 1, the sta-
tus vector is X1 ¼ ð0; 0; . . . ; 0Þ, which means that all the
selected r edges are failed. In other words, all the possible
graphs in V1 do not include the edges in T . The probability
of a possible graph in Stratum i (i ¼ 1; . . . ; 2r) is given by

pi ¼ Pr½GP 2 Vi� ¼
Y

ej2T^Xi;j¼1
pj

Y
ej2T^Xi;j¼0

ð1� pjÞ: (7)

In our stratification approach, a question that arises is how
to select the r edges for stratification. As shown in the previ-
ous version of this paper [13], the edge-selection strategy for
choosing r edges significantly affects the performance of the
estimator. One straightforward strategy is to randomly pick
r edges from the edge set E. We refer to this edge-selection
strategy as the random edge-selection strategy (RM). With
the RM strategy, the selected r edges may not directly con-
tribute to compute the query evaluation function fqðGÞ. For
example, assume that the query evaluation function fqðGÞ
denotes the number of nodes in the possible graphG that are
reachable from the query node q (i.e., this query evaluation
problem is an instance of influence function evaluation prob-
lem [8], [11]). Further, we suppose that the uncertain graph G
has two connected components and the query node q is in
the first component. If all the selected r edges are in the sec-
ond component, then these r edges make no contribution to
compute fqðGÞ. This may reduce the performance of BSS-I.

To avoid such a problem, we introduce a heuristic edge-
selection strategy based on the breadth-first-search (BFS) vis-
iting order of the edges. To estimate FqðGÞ, we first invoke a
BFS algorithm starting from the query node q to obtain the
first r edges according to the BFS visiting order of the edges.
Then, we use these r edges for stratification. We refer to such
edge-selection strategy as the BFS edge-selection strategy.
Obviously, according to the BFS strategy, the selected edges
directly contribute to computing fqðGÞ. It is important to

emphasize that the RM strategy is very general which can be
used for any query evaluation problems, while the BFS edge-
selection strategy only work well on a class of query evalua-
tion problems where the query evaluation function can be
calculated by the BFS algorithm, such as the reachability
query [3], shortest path query [2], network reliability estima-
tion [10], and influence function evaluation [8].

The BSS-I estimator. Let N be the total number of samples,
Ni be the number of samples drawn from Stratum i
(i ¼ 1; 2; . . . ; 2r), andGi;j (j ¼ 1; 2; . . . ; Ni) be a possible graph
sampled from Stratum i. Then, BSS-I is given as follows.

F̂BSSI ¼
X2r
i¼1

pi
1

Ni

XNi

j¼1
fqðGi;jÞ; (8)

where pi is defined in Eq. (7). The following theorem shows

that F̂BSSI is an unbiased estimator of FqðGÞ. All the missing
proofs of this paper can be found in the supplementary doc-
ument of the paper, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TKDE.2015.2485212.

Theorem 3.1. EðF̂BSSIÞ ¼ FqðGÞ.

Let si be the variance of the sample in Stratum i. Since
the samples are independently drawn by the basic stratified
sampling algorithm, thus the variance of BSS-I is

varðF̂BSSIÞ ¼
X2r

i¼1 p
2
i si=Ni: (9)

Algorithm 1. BSS-I(G,N , q, r)

Input: An uncertain graph G ¼ ðV;E; P Þ, the sample size N ,
a query q, and the stratification parameter r.

Output: The BSS-I estimator F̂.

1: F̂ 0;
2: Choose r edges from E by an edge-selection strategy;
3: for i ¼ 1 to 2r do
4: LetXi be the status vector of Stratum i (Table 1);
5: Gi  simplify graph G based onXi;
6: Compute pi by Eq. (7),Ni  ½piN �, t 0;
7: for j ¼ 1 to Ni do
8: Sampling Gi to generate a possible graph Gj;
9: Compute fqðGjÞ, t tþ fqðGjÞ;
10: t t=Ni, F̂ F̂þ pit;
11: return F̂;

Sample allocation. As shown in Eq. (9), the variance of
BSS-I depends on the sample size of all strata, i.e., Ni, for
i ¼ 1; 2; . . . ; 2r. Thus, the question is how to allocate the
sample size for each Stratum i (i ¼ 1; 2; . . . ; 2r) so as to mini-

mize the variance of BSS-I, i.e., varðF̂BSSIÞ. Formally, the
sample allocation problem is formulated as follows:

min varðF̂BSSIÞ ¼
P2r

i¼1 p
2
i
si
Ni

s:t:
P2r

i¼1 Ni ¼ N:
(10)

By applying the Lagrangian method, we can derive the opti-
mal sample allocation strategy which is given by

Ni ¼ Npi
ffiffiffiffiffi
si
p

=
X2r

i¼1 pi
ffiffiffiffiffi
si
p

; (11)

for i ¼ 1; . . . ; 2r. From Eq. (11), the optimal allocation needs
to know the variance of the sample in each stratum, i.e., si,
for i ¼ 1; . . . ; 2r. Unfortunately, such variances are unavail-
able in our problem. However, if we set the sample size of
Stratum i to piN (proportional sample allocation), then the
variance of BSS-I will be no larger than the variance of
NMC.

Theorem 3.2. IfNi ¼ piN , varðF̂BSSIÞ � varðF̂NMCÞ.

Equipped with the stratification and sample allocation
methods, we can easily devise the BSS-I algorithm. The
detailed implementation of the BSS-I algorithm can be found
in the preliminary version of this paper [13]. Below, we

TABLE 1
Stratum Design of Class-I Estimators

Edges e1 e2 e3 � � � er erþ1 � � � em Prob. space

Stratum 1 0 0 0 � � � 0 � � � � � V1

Stratum 2 1 0 0 � � � 0 � � � � � V2

Stratum 3 0 1 0 � � � 0 � � � � � V3

� � � � � � � � �
Stratum 2r 1 1 1 � � � 1 � � � � � V2r
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propose a new implementation which integrates an elegant
graph simplification technique into the BSS-I algorithm.

The graph simplification technique. The key idea of the graph
simplification technique is that we are able to simplify the
uncertain graph after determining the statuses of the selected
r edges in the BSS-I algorithm. This is because in the stratifica-
tion procedure (Table 1), some edges are definitely failed in
strata from 1 to 2r � 1. In each of these strata, the failed edges
(statuses are 0) may lead to many other edges that are irrele-
vant to the query. Therefore, all those irrelevant edges can be
pruned, thus simplifying the original uncertain graph. For
example, let us consider the influence function evaluation
problem where the query can be a node s and the goal is to
compute the expected number of nodes that are reachable
from s. In this example, after deleting the failed edges, all the
residual edges that cannot be traversed by a BFS starting from
s are irrelevant edges. As a result, we can prune all those
edges because they are irrelevant to the query.

The general framework of the BSS-I algorithm with
graph simplification technique is outlined in Algorithm 1.
Unlike our previous implementation [13], the new imple-
mentation includes a graph simplification step (line 5),
where we simplify the uncertain graph after determining
the status vector Xi for each stratum i. After that, we
perform the same stratified sampling procedure as [13] on
the simplified uncertain graph. It should be noted that in
Algorithm 1, we give a general framework with the graph
simplification technique (line 5), the detailed implementa-
tion of the graph simplification procedure is a nontrivial
task, which depends on different applications. In Section 6,
we will show how to implement the graph simplification
techniques for three different uncertain graph applications.

The main advantages of the graph simplification tech-
nique are threefold. First, it reduces the graph size, thus
clearly saving the computational cost for sampling the
uncertain graph and calculating the query evaluation func-
tion as well. Second, it eliminates the “uncertainty” of the
uncertain graph after pruning the irrelevant edges, thus it is
expected to improve the accuracy of the estimators. Indeed,
in our experiments, we will show that with the graph sim-
plification technique, the new implementations of our
algorithms not only shorten the running time, but also sig-
nificantly improve the accuracy of the algorithms. Third, we
will show that for the recursive stratified sampling algo-
rithms, the graph simplification techniques can avoid to
pick the irrelevant edges for stratification, because the irrel-
evant edges are pruned in each stratum.

For the time complexity of Algorithm 1, we assume that
computing the query evaluation function for each possible
graph takes OðMÞ time (line 9). Further, we assume that the
total time overhead of the graph simplification procedure
can be dominated by OðmÞ. In Section 6, we will show how
to achieve this in three different applications. Then, under
these assumption, we can easily derive that the time com-
plexity of Algorithm 1 is OðNðmþMÞÞ which is equal to
that of the NMC algorithm.

3.2 Recursive Stratified Sampling (RSS-I)

Recall that BSS-I splits the entire set of possible graphs into
2r subsets. We observe that BSS-I can be recursively applied
into any subsets. Based on this observation, we develop a

recursive stratified sampling estimator, called RSS-I. The
original implementation of the RSS-I algorithm can be
found in [13]. Here we present an optimized implementa-
tion given in Algorithm 2, which integrates the graph sim-
plification technique into the recursive stratified sampling
procedure. Specifically, RSS-I recursively partitions the
sample size N to Ni ¼ piN (i ¼ 1; 2; . . . ; 2r) to estimate
FqðGÞ in Stratum i (lines 9-15 in Algorithm 2). Moreover, in
each Stratum i, RSS-I recursively simplifies the uncertain
graph (line 12). The RSS-I algorithm terminates until the
sample size is smaller than a given threshold (t) or the num-
ber of residual uncertain edges is smaller than r (line 2).
When the terminative conditions of the RSS-I algorithm are
satisfied, we perform a naive Monte-Carlo sampling to esti-
mate FqðGÞ (lines 3-7). Similar to BSS-I, the partition
approach in RSS-I also relies on the edge-selection strategy
(line 9). Likewise, for the general query evaluation problem,
we can use the random edge-selection (RM) strategy. For
the query evaluation problems in which the query evalua-
tion function can be solved by the BFS algorithm, we recom-
mend to use the BFS edge-selection strategy. Similarly,
suppose that the total time complexity for the graph simpli-
fication procedure is dominated by OðmÞ. Then, by a similar
analysis shown in [13], we can derive that the time complex-
ity of RSS-I is OðNðmþMÞÞ which is the same as the BSS-I
and NMC algorithms.

Since BSS-I is unbiased, RSS-I is also unbiased. More-
over, RSS-I reduces the variance in each partition, thus the
variance of RSS-I is no larger than the variance of BSS-I. For-
mally, we have the following theorem.

Theorem 3.3. Let varðF̂RSSIÞ be the variance of RSS-I, then

varðF̂RSSIÞ � varðF̂BSSIÞ.

Algorithm 2. RSS-I(G, N , q, r, t)

Input: An uncertain graph G ¼ ðV;E; P Þ, the sample size N ,
a query q, and parameters r and t

Output: The RSS-I estimator F̂.

1: F̂ 0;
2: if N < t or jEj < r then
3: for j ¼ 1 to N do
4: Sampling G to generate a possible graph Gj;
5: Compute fqðGjÞ;
6: F̂ F̂þ fqðGjÞ;
7: return F̂=N ;
8: else
9: T  select r edges from G by an edge-selection strategy;
10: for i ¼ 1 to 2r do
11: LetXi be the status vector of set T in Stratum i (Table 1);
12: Gi  simplify graph G based onXi;
13: Compute pi by Eq. (7),Ni  piN½ �;
14: mi  RSS-I (Gi,Ni, q, r, t);
15: F̂ F̂þ pimi;
16: return F̂;

Relation to the algorithm proposed in [3]. In [3], the authors
propose a similar recursive stratified sampling method for
the distance-constraint reachability query problem in an
uncertain graph. Their algorithm recursively picks one edge
for stratification. Specifically, in a stratification, their algo-
rithm partitions the population into two sub-populations,
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and then recursively applies the same idea into each sub-pop-
ulation. Essentially, their algorithm is a special case of the
RSS-I algorithm when r ¼ 1. Similarly, their algorithm can
also be integrated with the graph simplification technique
proposed in this paper. The main drawback of their method
is that when r ¼ 1, the effectiveness of the graph simplifica-
tion technique is rather limited, because it generally cannot
prune too many irrelevant edges based on only one failed
edge. However, the RSS-I algorithm can alleviate this issue,
because we can choose an appropriate r (r > 1) to achieve a
good graph simplification performance. In addition, different
from their algorithm, in the following sections, we will pro-
pose two new recursive stratification sampling algorithms
based on drastically different stratification techniques, which
aremore flexible than theRSS-I algorithm.

4 NEW CLASS-II ESTIMATORS

In this section, we propose two new stratified sampling esti-
mators, named BSS-II and RSS-II estimators. The BSS-II esti-
mator is based on a new stratification method, which allows
us to finely tune the number of strata, thus it is more flexible
than BSS-I in practice. Similar to RSS-I, the RSS-II estimator
uses the idea of recursive stratified sampling, which recur-
sively applies BSS-II in each stratum. To distinguish the
class-I estimators, we refer to both BSS-II and RSS-II as the
class-II estimators.

4.1 Basic Stratified Sampling (BSS-II)

Stratification. In BSS-II, the new stratification method
splits the probability space V into rþ 1 various subspa-
ces (V0; . . . ;Vr) by choosing r edges. Specifically, for
Stratum 0, we set the statuses of all the r selected edges
to “0”, and for Stratum i (i 6¼ 0), we set the status of
edge i to “1”, the statuses of all the previous i� 1 edges
(i.e., e1; . . . ; ei�1) to “0”, and the statuses of the rest of
edges to “�” denoting that their statuses are undeter-
mined. Unlike the stratification method used in BSS-I,
this new stratification approach allows us to finely tune
the stratification parameter r because it only generates
rþ 1 strata. However, for the BSS-I estimator, r leads to
2r strata, thus it is hard to tune the number of strata of
the estimator. Moreover, compare to the stratification
method used in BSS-I, we will show in Section 6 that
this new stratification method is relatively easy to inte-
grate with the graph simplification technique. The new
stratum design method is depicted in Table 2.

In Table 2, each stratum (Stratum 0, Stratum 1, . . ., Stratum
r) corresponds to a subspace (V0;V1; . . . ;Vr). For any i 6¼ j,
we have Vi \Vj ¼ ;. Below, we show that

S
r
i¼0Vi ¼ V. Let

T ¼ ðe1; e2; . . . ; erÞ be the set of r selected edges and pj
(j ¼ 1; . . . ; r) be the corresponding probability, then the
probability of a possible graph in Stratum i is given by

p0i ¼ Pr½GP 2 Vi� ¼
Qr

j¼1 ð1� pjÞ; if i ¼ 0

pi
Qi�1

j¼1 ð1� pjÞ; otherwise:

(
(12)

The following theorem implies that
S r

i¼0Vi ¼ V.

Theorem 4.1.
Pr

i¼0 Pr½GP 2 Vi� ¼ 1.

By Theorem 4.1, the stratum design approach described
in Table 2 is a valid stratification method.

The BSS-II estimator. Similar to BSS-I, we let N be the total
sample size, and Ni be the sample size of Stratum i, and Gi;j

(j ¼ 1; 2; . . . ; Ni) be a possible graph sampled from Stratum
i. Then, the BSS-II estimator is given by

F̂BSSII ¼
Xr
i¼0

p0i
1

Ni

XNi

j¼1
fqðGi;jÞ; (13)

where p0i is given in Eq. (12). Similar to Theorem 3.1, the fol-
lowing theorem shows that BSS-II is unbiased.

Theorem 4.2. EðF̂BSSIIÞ ¼ FqðGÞ.
The variance of BSS-II is given by

varðF̂BSSIIÞ ¼
Xr
i¼0

p0i
2
si=Ni; (14)

where si denotes the variance of the sample in Stratum i.
Sample allocation. Similar to the sample allocation

approach used in BSS-I, for BSS-II, we set the sample size of
Stratum i to p0iN , i.e.,Ni ¼ p0iN . Based on this sample alloca-
tion method, we show that the variance of BSS-II is no larger
than the variance of NMC.

Theorem 4.3. IfNi ¼ p0iN , varðF̂BSSIIÞ � varðF̂NMCÞ.
With the stratification and sample allocation methods, we

are ready to give the BSS-II algorithm. Likewise, the graph
simplification technique used in BSS-I can also be applied to
BSS-II. The detailed description of the BSS-II algorithm with
the graph simplification technique can be found in the sup-
plementary document of this paper, available online. It is
worth mentioning that the edge-selection strategies used in
BSS-I can also be used in BSS-II. In addition, we can also
derive that the time complexity of BSS-II is OðNðmþMÞÞ
based on the same assumption as made in BSS-I.

4.2 Recursive Stratified Sampling (RSS-II)

Based on BSS-II, we develop another new recursive strati-
fied sampling estimator. Similar to the idea of RSS-I, RSS-
II makes use of BSS-II as a building block and recursively
applies BSS-II in each stratum. More specifically, RSS-II
first partitions the probability space V into rþ 1 subspace
Vi (i ¼ 0; 1; . . . ; r) by the stratification method used in
BSS-II. Then, the same partition procedure is recursively
performed in each subspace Vi. In each partition, RSS-II
utilizes the sample allocation method used in BSS-II to
allocate the sample size. Similarly, the graph simplifica-
tion technique is also recursively applied in each stratum.
The recursion process of RSS-II will terminate until the
sample size is smaller than a given threshold (t) or the
number of residual uncertain edges is smaller than r. Like-
wise, RSS-II is unbiased and its variance is no larger than
that of BSS-II. Also, we can derive that the time complex-
ity of the RSS-II algorithm is OðNðmþMÞÞ by assuming
that the total time complexity of the graph simplification
procedure is bounded by OðmÞ. We will show how to
achieve this time complexity in Section 6 for three differ-
ent uncertain graph query applications. The detailed
description of the RSS-II algorithm can be found in the
supplementary document of this paper, available online.
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5 CUT-SET BASED ESTIMATORS

In this section, we propose two cut-set based estimators to
further improve the accuracy of our class-I and class-II esti-
mators for a kind of problem where the query evaluation
function has a so-called cut-set property. Below, we first
present a new sampling algorithm called focal sampling (FS)
which forms a building block for developing the cut-set
based estimators.

5.1 Focal Sampling

First, we define the cut set for a query evaluation function.

Definition 5.1. Given an uncertain graph G ¼ ðV;E; P Þ, a query
q, and a query evaluation function fqðGÞ, the cut set C is a

strict subset of edges (i.e., C 	 E) such that fqðGÞ is a con-

stant for all the possible graphs G with all edges in C are failed
(i.e., their statuses are zeros).

A query evaluation function fqðGÞ has a cut-set property
if and only if there is a cut set C satisfying the above defini-
tion. According to Definition 5.1, for a query q, we can parti-
tion the probability space V into two subspaces denoted by

V0 and �V0 based on the cut set C. Here V0 is a set of all the
possible graphs such that for any possible graph G ¼ ðVG;

EGÞ 2 V0 we have EG \ C ¼ ;, and �V0 ¼ VnV0. Let
C ¼ fe1; e2; . . . ; ejCjg, then the probability of a possible

graph G in V0 is given by

Pr½G 2 V0� ¼ pc
0 ¼

YjCj
j¼1
ð1� pjÞ; (15)

and the probability of G 2 �V0 is given by �pc
0 ¼ 1� pc

0.
Assume that for any possible graph G 2 V0, fqðGÞ ¼ u0 is a

constant and can be easily calculated. Then, to evaluate
FqðGÞ, we do not need to draw samples from V0. Instead, we

can focus on picking samples from �V0. Based on this idea, we

propose the focal sampling estimator F̂FS as follows

F̂FS ¼ pc
0u0 þ �pc

0

XN
i¼1

fqðGiÞ=N; (16)

whereN is the sample size andGi is a possible graph drawn

from �V0. The following theorem shows that F̂FS is an unbi-
ased estimator of FqðGÞ.
Theorem 5.1. EðF̂FSÞ ¼ FqðGÞ.

Let �u0 and �s0 be the expectation and variance of the sam-

ples in �V0 respectively. Theorem 5.2 shows that the variance

of the FS estimator (F̂FS) is no larger than that of the NMC
estimator.

Theorem 5.2. varðF̂FSÞ � varðF̂NMCÞ.

5.2 The BCSS Estimator

Recall that in the FS estimator, we need to draw samples from
�V0 by NMC. To further reduce its variance, we propose a
basic cut-set based stratified sampling estimator, called BCSS,

which uses stratified sampling to draw samples from �V0. Sim-
ilarly, there are two key techniques in BCSS: stratification and
sample allocation. Below, we first present the stratification
method, and then describe the sample allocation strategy.

Stratification. First, we divide the probability space �V0

into jCj subspaces based on the cut set C, which is denoted
by V1; . . . ;VjCj. Then, we let each subspace to be a stratum,

i.e., Vi denotes Stratum i for i ¼ 1; . . . ; jCj, and draw sam-
ples separately from each stratum. The detailed stratifica-
tion method is given in Table 3.

Based on the stratification method, we can easily derive
that for any i 6¼ j, we have Vi \Vj ¼ ; and

S jCj
i¼1Vi ¼

�V0 ¼ VnV0. The probability of a possible graph in Stratum i
is given by

Pr½G 2 Vi� ¼ pc
i ¼ pi

Yi�1
j¼1
ð1� pjÞ; (17)

where i ¼ 1; . . . ; jCj. Also, it is easy to show that

XjCj
i¼1

pc
i ¼ 1� pc

0; (18)

where pc
0 is given in Eq. (15).

The estimator. Let N be the sample size, Ni be the sample
size of Stratum i, and Gi;j be a possible graph drawn from
Stratum i. Then, the BCSS estimator is given by

F̂BCSS ¼ pc
0u0 þ

XjCj
i¼1

pc
i

XNi

j¼1
fqðGi;jÞ=Ni; (19)

where
PjCj

i¼1 Ni ¼ N . The following theorem shows that

F̂BCSS is unbiased.

Theorem 5.3. EðF̂BCSSÞ ¼ FqðGÞ.
The variance of F̂BCSS is given by

varðF̂BCSSÞ ¼
XjCj
i¼1
ðpc

iÞ2si=Ni; (20)

where si denotes the variance of the sample in Stratum i.
Sample allocation. Here we develop a new sample alloca-

tion strategy for BCSS. First, we define the conditional prob-
ability Pr½G 2 VijG =2 V0� as follows

Pr½G 2 VijG =2 V0� ¼ pcd
i ¼

pi
Qi�1

j¼1 ð1� pjÞ
1�Qr

j¼1 ð1� pjÞ ; (21)

TABLE 2
Stratum Design of Class-II Estimators

Edges e1 e2 e3 � � � er erþ1 � � � em Prob. space

Stratum 0 0 0 � � � 0 � � � � � V0

Stratum 1 1 � � � � � � � � � � � V1

Stratum 2 0 1 � � � � � � � � � � V2

Stratum 3 0 0 1 � � � � � � � � � V3

� � � � � � � � �
Stratum r 0 0 0 � � � 1 � � � � � Vr

TABLE 3
Stratum Design of Cut-Set Based Estimators

Edges e1 e2 e3 � � � ejCj ejCjþ1 � � � em Prob. Space

Stratum 1: 1 � � � � � � � � � � � V1

Stratum 2: 0 1 � � � � � � � � � � V2

Stratum 3: 0 0 1 � � � � � � � � � V3

� � � � � � � � �
Stratum jCj : 0 0 0 � � � 1 � � � � � VjCj
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where i ¼ 1; . . . ; jCj and Pr½G 2 VijG =2 V0� denotes the
probability of sampling a possible graph from Vi condition-
ing on that it is not in V0. Second, our sample allocation

strategy is given by Ni ¼ pcd
i N for Stratum i. Based on this

allocation strategy, we prove that the variance of F̂BCSS is
no larger than that of the FS estimator.

Theorem 5.4. varðF̂BCSSÞ � varðF̂FSÞ.

Similar to BSS-II, we can also apply the graph simplifica-
tion technique into the BCSS algorithm. The detailed
description of the algorithm is shown in Algorithm 3. Also,
by a similar assumption as made in BSS-II, the time com-
plexity of Algorithm 3 is OðNðmþMÞ þ T Þ, where comput-
ing the cut set takes OðT Þ time. It is worth mentioning that
in many applications the cut set can be easily calculated,
and the time complexity OðT Þ can be dominated by OðmÞ.
As a result, the time complexity of Algorithm 3 is the same
as that of NMC.

Algorithm 3. BCSS(G,N , q)

Input: An uncertain graph G ¼ ðV;E; P Þ, the sample size N ,
and a query q

Output: The BCSS estimator F̂

1: F̂ 0;
2: Compute the cut set C based on q, fq, and G;
3: for i ¼ 1 to jCj do
4: Compute pc

i (Eq. (17)) and pcd
i (Eq. (21));

5: Ni  ½pcd
i N �, t 0;

6: LetXi be the status vector of Stratum i;
7: Gi  simplify graph G based onXi;
8: for j ¼ 1 to Ni do
9: Sampling Gi to generate a possible graph Gj;
10: Compute fqðGjÞ, t tþ fqðGjÞ;
11: t t=Ni, F̂ F̂þ pc

i t;
12: Calculate p0 by Eq. (15) and u0;
13: return F̂þ pc

0u0;

5.3 The RCSS Estimator

Similar to RSS-I and RSS-II, the BCSS estimator can also be
recursively applied in each stratum. Based on this idea, we
propose a recursive cut-set based stratified sampling estima-
tor, named RCSS estimator. The RCSS algorithm is outlined
in Algorithm 4. Likewise, the RCSS estimator is unbiased and
its variance is no larger than that of BCSS. Also, we can show
that the time complexity of Algorithm 4 isOðNðM þmþ T ÞÞ
based on the same assumption as made in RSS-II. In many
real-world applications, OðT Þ can be dominated by OðmÞ,
thus in these cases the time complexity of RCSS is the same as
that of NMC. The detailed description of Algorithm 4 and its
complexity analysis are given in the supplementary docu-
ment of this paper, available online.

5.4 Discussion

Here we give a brief discussion of all the proposed estima-
tors. First, recall that the stratification method of BCSS is
very similar to that of BSS-II. The differences between these
two methods are: (1) the stratification method of BCSS is
based on the cut set while the stratification of BSS-II is based
on any selected r edges, and (2) unlike BSS-II, there is no

Stratum 0 in BCSS. Moreover, we find that if r ¼ jCj, the
variance of BCSS is no larger than that of BSS-II.

Algorithm 4. RCSS(G,N , q, r, t)

Input: An uncertain graph G ¼ ðV;E; P Þ, the sample size N
a query q, and parameters r and t

Output: The RCSS estimator F̂

1: F̂ 0;
2: Compute the cut set C based on q, fq, and G;
3: if N < t or jEj < r or jCj ¼¼ 0 then
4: for j ¼ 1 to N do
5: Sampling G to generate a possible graph Gj;
6: Compute fqðGjÞ, F̂ F̂þ fqðGjÞ;
7: return F̂=N ;
8: else
9: Compute pc

0 and u0 based on the cut set C;
10: for i ¼ 1 to jCj do
10: LetXi be the status vector of set C in Stratum i;
12: Gi  simplify graph G based onXi;
13: Compute pc

i (Eq. (17)) and pcd
i (Eq. (21));

14: Ni  ½pcd
i N �;

15: mi  RCSS(Gi, Ni, q, r, t);
16: F̂ F̂ + pc

imi;
17: return F̂ + pc

0m0;

Theorem 5.5. If r ¼ jCj, varðF̂BCSSÞ � varðF̂BSSIIÞ.

Theorem 5.5 implies that the BCSS estimator reduces the
variance of BSS-II under the condition of jCj ¼ r. Note that
it is very hard to compare the variances between BCSS and
BSS-II for jCj 6¼ r because in this case the strata of these two
methods are totally different. By the same reason, it is also
very hard to compare the variances between BCSS and BSS-
I and compare the variances among RCSS, RSS-I, and RSS-II
as well. In addition, it should be noted that the class-I and
class-II estimators are very general which are independent
of the graph structure and the property of the query evalua-
tion function. However, both the BCSS and RCSS estimators
exploit the graph structure and the cut-set property of the
query evaluation function, thus these estimators can be
deemed as data-driven methods where the stratification
methods are driven by the cut set. In our experiments, we
will show that such data-driven methods significantly out-
perform the class-I and class-II estimators.

6 APPLICATIONS

In this section, we apply the proposed algorithms with
graph simplification technique to three different uncertain
graph query problems, which are the influence function
evaluation problem [8], [11], the expected-reliable distance
query problem [2], as well as the distance-constraint reach-
ability problem [3]. For the two former problems, the origi-
nal implementations of our algorithms (without integrating
the graph simplification technique) can be found in the pre-
liminary version of this paper [13]. It should be noted that
developing an efficient graph simplification technique for
the recursive stratified sampling algorithms is a nontrivial
task. This is because in our algorithms, we need to invoke
the graph simplification procedure in each stratum, thus the
total time complexity of the graph simplification procedure
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may be very high. Below, we show how to tackle this chal-
lenge for three different uncertain graph query problems.

6.1 Influence Function Evaluation

Given an uncertain graph G and a seed set A, the influence
function evaluation problem is to compute the expected
number of nodes in G that are reachable from the seed set A.
This problem plays a crucial role in influence maximization
problem in social networks [8], [11]. To simplify our presen-
tation, we consider a special case that the seed set only con-
tains one node, i.e., jAj ¼ 1. For the general case (jAj > 1),
the problem can be easily converted to the problem with
only one seed node. This is because we can add a virtual
node q and jAj edges from q to each node in A with proba-
bility 1, then the IFE problem with seed set A is equivalent
to the problem with seed node q. Clearly, such a problem is
an instance of the expectation query evaluation problem.
The query is a seed node, and the query evaluation function
on a possible graph G, i.e., fqðGÞ, denotes the number of

nodes that are reachable from the seed node q in G. The
query evaluation function can be calculated by the BFS algo-
rithm. Beyond the IFE problem, here we also introduce the
threshold IFE problem. In particular, given an uncertain
graph G, a seed node q, a threshold d, the threshold IFE
problem aims at estimating the probability of fqðGÞ 
 d for

a possible graph G. In the following, we focus on the IFE
problem. The algorithms can be easily generalized to the
threshold IFE problem because we only need to replace
fqðGÞ by IðfqðGÞ 
 dÞ.

Graph simplification for class-I estimators. For the class-I
estimators (BSS-I and RSS-I), a straightforward graph sim-
plification algorithm is to invoke a BFS procedure that starts
from the seed node q to traverse the uncertain graph G
(ignore the probabilities of the edges), and all the nodes that
cannot be reachable from q can be pruned. However, this
method is rather inefficient. This is because in BSS-I and
RSS-I, we need to invoke such a algorithm in each stratum
for graph simplification (see line 5 in Algorithm 1 and
line 12 in Algorithm 2). Since there will be 2r strata in each
stratification, we has to invoke such a BFS algorithm 2r

times in each stratification, which takes Oð2rmÞ time com-
plexity in the worst case. Below, we present a new algo-
rithm that only invokes the BFS procedure rþ 1 times in
each stratification, which is clearly much more efficient than
the straightforward algorithm.

Specifically, in the stratification, we only invoke the BFS
procedure for the first rþ 1 strata, i.e., the first rþ 1 rows
in Table 1. Then, for each Stratum i (i ¼ 1; . . . ; rþ 1), we
can obtain a simplified uncertain graph Gi after invoking a
BFS. For the other strata (i.e., Stratum i for i ¼ rþ 2; . . . ; 2r),
the corresponding simplified uncertain graphs can be
obtained by merging some of Gi (i ¼ 1; . . . ; rþ 1) without
invoking BFS. The key idea our algorithm is based on Theo-
rem 6.1. Before giving the theorem, we first show a useful
lemma below.

Lemma 6.1. Let Xi be the status vector of Stratum i (Table 1).
Then, for i ¼ rþ 2; . . . ; 2r, each Xi can be represented by the
element-wise addition among some of the first rþ 1 status vec-
tors (Xi with i ¼ 1; . . . ; rþ 1), i.e.,Xi ¼

P
j2S;S�f1;...;rþ1gXj.

For example, suppose that r ¼ 3. The first rþ 1 status vec-
tors are ð0; 0; 0Þ, ð1; 0; 0Þ, ð0; 1; 0Þ, and ð0; 0; 1Þ. Then, for the
status vector ð1; 1; 0Þ, it can be represented by the element-
wise addition between the status vectors ð1; 0; 0Þ and ð0; 1; 0Þ.
Theorem 6.1. For each Stratum i (i ¼ rþ 2; . . . ; 2r), if Xi ¼P

j2S;S�f1;...;rþ1gXj (element-wise summation), then the sim-

plified uncertain graph Gi can be obtained by Gi ¼S
j2S;S�f1;...;rþ1gGj.

With Theorem 6.1, the total time complexity of the graph
simplification procedure in BSS-I is bounded by OðrmÞ.
Since r must be a very small constant in the BSS-I algorithm
(e.g., r ¼ 5), we have OðrmÞ ¼ OðmÞ. For the RSS-I algo-
rithm, we only invoke the graph simplification procedure in
the first stratification to achieve the OðmÞ time complexity.
For the other stratifications in RSS-I, we do not perform
graph simplification any more. In the experiments, we will
show that the RSS-I algorithm with such a lightweight graph
simplification method not only boosts the accuracy of the
estimator, but it can also reduce the running time of the
algorithm (because we only need to sample a relatively
small uncertain graph after graph simplification).

Graph simplification for class-II estimators. For the class-II
estimators, a similar straightforward algorithm for graph
simplification is to perform BFS starting from q to find all the
irrelevant nodes, which cannot be reachable from q. How-
ever, for a stratification in BSS-II and RSS-II, the straightfor-
ward algorithm invokes the BFS procedure rþ 1 times,
which takes OðrmÞ time in total. Unlike BSS-I and RSS-I, r
could be a relatively large constant in BSS-II and RSS-II (e.g.,
r ¼ 50), thus the straightforward algorithm is costly. Below,
we develop a much more efficient graph simplification algo-
rithm, called progressive BFS, which progressively traverses
the whole uncertain graph by a BFS procedure.

The rough idea of the progressive BFS algorithm is as fol-
lows. First, the algorithm performs a BFS to simplify the
residual uncertain graph denoted by �G0 after removing all
the selected r edges (corresponding to simplify the uncer-
tain graph in Stratum 0). Then, the algorithm iteratively exe-
cutes r times. In iteration i for i ¼ 1; . . . ; r, the algorithm
adds back one removed edge (one of the selected r edges)

into �Gi�1 which results in a new residual graph �Gi, and then

performs a pruned BFS on �Gi, in which the pruned BFS does
not traverse the nodes that have already been visited by the
previous BFS procedures (corresponding to simplify the
uncertain graph in Stratum r� iþ 1).

More specifically, the progressive BFS algorithm first sim-
plifies the uncertain graph in Stratum 0 (Table 2). In particu-
lar, the algorithm performs a traditional BFS from q on the
residual uncertain graph (ignore probabilities of the edges)
after removing all the selected r edges. We use a bitmapwith
OðnÞ bits to record the nodes whether they are visited by the
BFS or not. Then, the algorithm simplifies the residual uncer-
tain graphs from Stratum r to Stratum 1. To better describe
our algorithm, we refer to the edge with status ‘1’ in Stratum
i (i ¼ 1; . . . ; r) as the active edge (Recall that there is only one
active edge in each Stratum). When the algorithm simplifies
the residual uncertain graph in Stratum i (i ¼ 1; . . . ; r), the
algorithm first traverses the active edge in Stratum i, and
then performs a pruned BFS algorithm to traverse the
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residual uncertain graph (the graph after removing the failed
edges in Stratum i), where the pruned BFS does not traverse
the nodes that are visited by the previous BFS procedures.
During this procedure, the algorithm need to update the bit-
map to record the nodes that are newly visited by the pruned
BFS. When the pruned BFS terminates, the simplified uncer-
tain graph for Stratum i is the graph that includes all the vis-
ited nodes and edges so far.

Let Gi be the simplified uncertain graph for Stratum i
(i ¼ 0; . . . ; r) by the progressive BFS algorithm. Then, we
have the following theorem.

Theorem 6.2. For i ¼ 2; . . . ; r, we have Gi � Gi�1, and G0 � Gr,
where � denotes the inclusion relationship.

Based on Theorem 6.2, we can show the correctness of
the progressive BFS algorithm.

Theorem 6.3. The progressive BFS algorithm is correct.

For the time complexity, it is easy to show that each edge
in the uncertain graph is traversed at most once by the
whole progressive BFS procedure, thus the total time over-
head of the algorithm is OðmÞ.

Below, we show how to generalize the progressive BFS
algorithm for RSS-II. Recall that the RSS-II algorithm will
produce a recursion tree, where each tree node denotes a
stratification. It should be noted that each tree node also cor-
responds to a stratum, because in that tree node the algo-
rithm will recursively partition a stratum. In addition, for
each stratum, we have a residual uncertain graph after
removing all the failed edges in that stratum. A naive gener-
alization of the progressive BFS algorithm is to perform a
progressive BFS in each stratification, which is costly
because there may be too many tree nodes (stratifications).
Fortunately, we find that we can only perform a progressive
BFS in each level of the recursion tree to achieve the same
goal. Specifically, we assume that in each tree node, the chil-
dren of that node from left to right denote the Stratum 0,
Stratum r, . . ., Stratum 1, respectively as illustrated in Fig. 2
(a three-level recursion tree). In each level, we start BFS for
the leftmost tree node to simplify the uncertain graph corre-
sponding to that tree node, and then perform the pruned
BFS for the sibling nodes following a “left to right” order
(see Fig. 2). It can be shown that the simplified uncertain
graph obtained in a tree node is the same as the union of the
simplified graphs obtained in its children (using a similar
analysis of the progressive BFS algorithm for BSS-II). As a
result, the union of the simplified graphs obtained in all the
tree nodes in a level must be the same as the simplified
graph obtained in the root node. Since we make use of the
pruned BFS to simplify the graphs, thus all the edges are
visited at most once by the whole procedure in each level of

the recursion tree. Therefore, the total time complexity of

the graph simplification procedure is Oð�dmÞ, where �d
denotes the height of the recursion tree. For RSS-II, r is a rel-
atively large value (e.g., r ¼ 50), thus the height of the recur-

sion tree �d is OðlogN
r Þ which is very small (e.g., when r ¼ 50

and N ¼ 10;000, �d < 3). Thus, the time complexity of the
whole graph simplification procedure for RSS-II can be
bounded by OðmÞ.

Graph simplification for cut-set based estimators. For the cut-
set based estimators, we define the cut set as the set of all
the outgoing edges of the seed node q. This is because if all
the outgoing edges of q are failed, then no node can be
reachable from q, and thus fqðGÞ is a constant 0, satisfying

the definition of cut set. Based on the cut set, we can devise
a very similar graph simplification procedure as the class-II
estimators for the cut-set based estimators. The only differ-
ence is that we do not need to simplify the uncertain graph
in Stratum 0 (see Tables 2 and 3). Also, by a similar analysis
as the class-II estimators, the time complexity of the whole
graph simplification procedure for the cut-set based estima-
tors is OðmÞ.

6.2 Expected-Reliable Distance Query

The expected-reliable distance is an important measure for
k-nearest neighbor query on uncertain graphs [2]. Given an
uncertain graph G and two query nodes s and t, the
expected-reliable distance query is to estimate

Fs;tðGÞ ¼
X

G2VnV1
Pr½G�fs;tðGÞ=ð1� Pr½G 2 V1�Þ; (22)

where fs;tðGÞ is the query evaluation function representing
the length of the shortest path from s to t (the distance from
s to t), and V1 denotes the probability space in which s can-
not reach t, i.e., fs;tðGÞ ¼ 1 for G 2 V1. Besides the ERD

query problem, we also study its threshold counterpart.
More specifically, given an uncertain graph G, two query
nodes s and t, and a threshold d, the threshold ERD query is
to estimate the probability of fs;tðGÞ � d for a possible graph

G. Since the algorithm for the threshold ERD query is very
similar to the algorithm for the ERD query, we focus on the
ERD query. Note that we can easily apply the proposed
algorithms to this problem. The main technical challenge is
how to develop an efficient graph simplification technique
for our algorithms.

Our graph simplification is based on the following obser-
vation. For a query ðs; tÞ, we let Rs be a set of nodes that can
be reachable from s, and Rt be a set of nodes that can reach t
in the uncertain graph G (ignore probabilities). Then, we can
prune all the nodes that are not in Rs

T
Rt, because those

nodes cannot appear in the shortest path between s and t.
Recall that for the influential function evaluation problem,
we prune the nodes that cannot be reachable from the query
node q, and record the set of all reachable nodes Rq. Based
on this, we can apply the same graph simplification algo-
rithm as used for the IFE problem to the ERD query prob-
lem. Specifically, for the class-I estimators, in Stratum i

(i ¼ 1; . . . ; 2r), we let Ri
s be the set of reachable nodes from s

and Ri
t be the set of nodes that can reach t. Then, we per-

form the BFS procedures rþ 1 times for computing Ri
s in

Fig. 2. Illustration of the idea of the graph simplification procedure for
RSS-II. Si denotes Stratum i.
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the first rþ 1 strata respectively, and then we use the same

method as used in Section 6.1 to compute the other Ri
s in

Stratum rþ 2, . . ., Stratum 2r respectively. Similarly, we can

used the same method to compute Ri
t in each stratum. The

simplified uncertain graph in Stratum i can be obtained by

Ri
s

T
Ri

t. The whole procedure takes OðrmÞ ¼ OðmÞ time
complexity, as r is very small constant. Likewise, for the
class-II and cut-set based estimators, we perform the pro-

gressive BFS algorithm to compute Ri
s and Ri

t respectively,

and then take Ri
s

T
Ri

t to determine the simplified uncertain
graph in Stratum i. It is easy to figure out that the time com-
plexity of the whole procedure is also OðmÞ.

6.3 Distance-Constraint Reachability Query

The distance-constraint reachability query [3] is an instance
of the threshold query evaluation problem, where the query
is given by a source node s, a target node t, and the distance
threshold d. The goal of the query is to compute the proba-
bility that the distance between s and t is less than or equal
to the threshold d. To estimate such a probability, Jin et al.
propose an efficient algorithm in [3], which is a special case
of our RSS-I algorithm when r ¼ 1 (see Section 3.2). Clearly,
it is very easy to apply the proposed algorithms to the DCR
query problem. Before using our algorithms for evaluating
the query, we can make use of the pruning technique pro-
posed in [3] to simplify the uncertain graph. Specifically,
the pruning technique [3] is based on the following observa-
tion. Let dðs; vÞ denotes the shortest path distance from s to
v, and dðv; tÞ denotes the shortest path distance from v to t
in the uncertain graph (ignore the probabilities). Then, for

the nodes that are not in ~V ¼ fv 2 V jdðs; vÞ þ dðv; tÞ � dg
can be pruned. We can use two Dijkstra procedures (within

diameter d) to compute ~V , which takes nearly linear time
complexity [3]. Then, we execute our algorithms on this
simplified uncertain graph. The main challenge is how to
develop an efficient graph simplification procedure for our
algorithms.

For our algorithms, a straightforward graph simplifica-
tion procedure is to use the above pruning technique to find
the simplified uncertain graph. However, this is fairly ineffi-
cient, because we need to invoke the above pruning tech-
nique in each stratification (there may be too many
stratifications in RSS-I, RSS-II and RCSS). Moreover, it is
not clear how to reduce the total computational cost of the
whole graph simplification procedure for the DCR query
into OðmÞ time (like our simplification techniques devel-
oped for IFE problem and ERD query). To develop an effi-
cient graph simplification technique for the DCR query, we
resort to the graph simplification procedure used for the

ERD query. This is because the nodes that are not reachable
from s or cannot reach t can be definitely pruned for both
DCR and ERD queries. Therefore, in our implementation,
we apply the same graph simplification procedure that is
used for the ERD query to the DCR query, which takes
OðmÞ time in total.

7 EXPERIMENTS

In this section, we evaluate the accuracy and efficiency of
the proposed algorithms for the influence function evalua-
tion, the expected-reliable distance query, and the distance-
constraint reachability query. We also study the perfor-
mance of our algorithms for the threshold IFE and ERD
queries as well. Due to space limit, the results for the thresh-
old IFE and ERD queries are shown in the supplementary
document of this paper, available online.

Datasets. We use one synthetic dataset and five real-
world datasets in our experiments. We apply the same
parameters used in [3] to generate the synthetic dataset. In
particular, we first generate an Erdos-Renyi (ER) random
graph with 5,000 vertices and 50,616 edges. Then, for each
edge, we generate a probability according to a [0, 1] uniform
distribution. The five real-world datasets are as follows.
(1) Facebook dataset: this dataset originates from a Face-
book social network for students at University of California,
Irvine. It contains the users who sent or received at least one
message. We collect this dataset from (toreopsahl.com/
datasets). The dataset is a weighted graph, and the weight
of each edge denotes the number of messages passing over
the edge. (2) Condmat dataset: this dataset is a weighted col-
laboration network, where the weight of an edge represents
the number of co-authored papers between two collabora-
tors. We download this dataset from (www-personal.
umich.edu/�mejn/netdata). (3) DBLP dataset: this dataset
is also a weighted collaboration network, where the weight
of the edge signifies the number of co-authored papers. This
dataset is provided by the authors in [14]. (4) WikiCon data-
set: this dataset is a conflict network where the weights of
the edges represent the conflicts between users of the
English Wikipedia. We download this dataset from (konect.
uni-koblenz.de/networks/wikiconflict). (5) EastUSA data-
set: this is a road network dataset of eastern USA, where
the weights of the edges represent the transit time between
two locations. We download this dataset from (http://
www.dis.uniroma1.it/challenge9). Table 4 summarizes the
detailed information of our datasets. To obtain the uncertain
networks, for each real-world dataset, we generate the prob-
abilities using the method proposed in [2], [3]. Specifically,
to generate the probability of an edge, we apply an expo-
nential cumulative distribution function (CDF) with mean
2 to the weight of that edge.

Different estimators. We compare eleven different estima-
tors. The first two estimators are served as the baselines,
and the last nine estimators are our proposed recursive esti-
mators. The different estimators are summarized as follows.
(1) NMC, which is the naive Monte-Carlo estimator.
(2) RSSIR1, which is a special RSS-I estimator with random
(RM) edge-selection strategy and with parameter r ¼ 1.
This estimator is presented in [3] for computing distance-
constraint reachability on uncertain graphs. (3) RSS-I,

TABLE 4
Summary of the Datasets

Name Nodes Edges Ref.

ER 5,000 50,616 [3]
Facebook 1,899 20,296 [15]
Condmat 16,264 95,188 [16]
DBLP 78,648 376,515 [14]
WikiCon 118,100 2,917,785 Website
EastUSA 3,598,623 8,778,114 Website
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RSS-II, and RCSS which are the proposed recursive estima-
tors without integrating the graph simplification technique.
(4) BSS-I�, BSS-II�, BCSS�, RSS-I�, RSS-II�, and RCSS�, which
are the proposed recursive estimators with graph simplifi-
cation technique. For all the proposed estimators, we
use the BFS edge-selection strategy to pick the r edges for
stratification, because it is more effective than the RM edge-
selection strategy as shown in [13]. It should be noted that
we do not compare the proposed basic estimators without
graph simplification as they are shown to be less effective
than the proposed recursive estimators [13].

Evaluation metric. Two metrics are used to evaluate the
performance of different estimators: average query time
and relative variance (RV). The average query time evalu-
ates the efficiency of the estimators. The relative variance is
leveraged to evaluate the accuracy of the estimators. Let
sNMC be the variance of the NMC estimator. We calculate

the relative variance of an estimator F̂ by sF̂=sNMC . Since

computing the exact variance of an estimator is intractable,
we resort to an unbiased estimator of the variance. Similar
evaluation metric has been used in [3] for the distance-
constraint reachability problem. Specifically, to get the unbi-
ased estimator of the variance, we run each estimator

(F̂iðGÞ) 500 times. Then, the unbiased estimator of the vari-

ance is obtained by
P500

i¼1 ðF̂iðGÞ � �FiðGÞÞ2=499, where �FiðGÞ
denotes the mean of F̂iðGÞ (i ¼ 1; . . . ; 500).

Parameter settings and experimental environment. For all
estimators, we set the sample size N ¼ 1;000. For the class-I
and class-II estimators, we set r ¼ 5 and r ¼ 50 respectively,
because under this setting these estimators perform very
well. We will also study the effect of r in these estimators in
the experiments. For the threshold parameter t in RSS-I
(RSS-I�) and RSS-II (RSS-II�), we set t ¼ 10, and for the
threshold parameters in RCSS (RCSS�) we set t ¼ 10 and
r ¼ 10. All the experiments are conducted on a Scientific
Linux 6.0 workstation with 2xQuad-Core Intel(R) 2.66 GHz
CPU, and 32 G memory. All algorithms are implemented
in C++.

7.1 Experimental Results

In all the experiments, we randomly generate 1,000 queries
for three different queries: IFE, EDR, and DCR. The reported
results are the average result over all the queries.

Exp-1: Accuracy of different estimators. In this experiment,
we evaluate the accuracy of eleven different algorithms.
The results of different estimators for IFE, EDR, and DCR
queries are reported in Tables 5, 6, and 7, respectively. As
can be seen, both RCSS� and RCSS consistently outper-
form the other algorithms over all the datasets for all the
IFE, EDR, and DCR queries. This is because these two
algorithms exploit the graph structural information (the
cut set) for stratification which significantly reduce the
variances of the estimators by cutting an irrelevant stratum

TABLE 5
Influence Function Evaluation: Comparison of Relative Variance of Different Estimators

RV NMC RSSIR1 BSS-I� BSS-II� BCSS� RSSI RSSII RCSS RSSI� RSSII� RCSS�

ER 1.000 0.672 0.726 0.732 0.216 0.209 0.206 0.153 0.185 0.152 0.149
Facebook 1.000 0.559 0.643 0.651 0.321 0.257 0.240 0.168 0.204 0.169 0.162
Condmat 1.000 0.795 0.812 0.810 0.239 0.197 0.212 0.137 0.152 0.138 0.133
DBLP 1.000 0.538 0.601 0.589 0.203 0.192 0.182 0.125 0.169 0.129 0.123
WikiCon 1.000 0.603 0.631 0.633 0.216 0.198 0.193 0.131 0.172 0.138 0.130
EastUSA 1.000 0.682 0.691 0.685 0.218 0.201 0.195 0.135 0.181 0.139 0.132

TABLE 6
Expected-reliable Distance Query: Comparison of Relative Variance of Different Estimators

RV NMC RSSIR1 BSS-I� BSS-II� BCSS� RSSI RSSII RCSS RSSI� RSSII� RCSS�

ER 1.000 0.772 0.882 0.891 0.875 0.679 0.675 0.398 0.601 0.425 0.395
Facebook 1.000 0.759 0.874 0.880 0.871 0.648 0.650 0.356 0.562 0.398 0.353
Condmat 1.000 0.815 0.832 0.833 0.829 0.695 0.691 0.350 0.568 0.361 0.348
DBLP 1.000 0.756 0.852 0.853 0.846 0.683 0.680 0.515 0.631 0.520 0.513
WikiCon 1.000 0.789 0.861 0.859 0.844 0.690 0.685 0.526 0.632 0.531 0.526
EastUSA 1.000 0.792 0.859 0.852 0.834 0.693 0.686 0.531 0.629 0.534 0.529

TABLE 7
Distance-Constraint Reachability Query: Comparison of Relative Variance of Different Estimators

RV NMC RSSIR1 BSS-I� BSS-II� BCSS� RSSI RSSII RCSS RSSI� RSSII� RCSS�

ER 1.000 0.235 0.685 0.691 0.521 0.220 0.219 0.182 0.218 0.193 0.180
Facebook 1.000 0.231 0.643 0.646 0.516 0.231 0.236 0.185 0.226 0.189 0.181
Condmat 1.000 0.385 0.678 0.675 0.531 0.325 0.319 0.225 0.312 0.228 0.224
DBLP 1.000 0.432 0.720 0.713 0.562 0.331 0.328 0.236 0.319 0.238 0.233
WikiCon 1.000 0.512 0.732 0.724 0.570 0.355 0.351 0.218 0.347 0.225 0.216
EastUSA 1.000 0.573 0.715 0.709 0.568 0.328 0.324 0.253 0.320 0.255 0.250
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in each stratification (see Table 3). Also, we can see that
the other proposed recursive estimators perform very well
for all the IFE, EDR, and DCR queries, which drastically
reduce the relative variance over the state-of-the-art esti-
mator RSSIR1. For example, in the Condmat dataset in
Table 5, RSS-I, RSS-II, RCSS, RSS-I�, RSS-II�, and RCSS�

cut the relative variance over RSSIR1 by 403.5, 375.0,
580.3, 523.0, 576.1, and 597.7 percent respectively. More-
over, we can see that the recursive estimators with graph
simplification technique consistently outperform the cor-
responding recursive estimators without graph simplifica-
tion. The reasons are as follow. On the one hand, the
graph simplification procedure reduces the uncertainty of
the graph in each stratification, thus may cut the variance.
On the other hand, the graph simplification procedure
prunes many irrelevant edges, thus can avoid the algo-
rithms to select the irrelevant edges for stratification. In
addition, we find that RSS-II� performs much better than
RSS-I�, and its performance is comparable to that of
RCSS�. The reason could be that RSS-II� makes use of the
progressive BFS algorithm for graph simplification in each
stratification, while RSS-I� only invokes the graph simpli-
fication procedure in the first stratification to achieve the
OðmÞ time cost. Another additional observation is that the
proposed basic estimators with graph simplification also
perform well for all the queries, which are significantly
better the NMC estimator and slightly worse than RSSIR1

in general. These results confirm the theoretical analysis
in the previous sections.

Exp-2: Efficiency of different estimators. We report the aver-
age query time of eleven various algorithms for IFE, EDR,
and DCR queries in Tables 8, 9, and 10, respectively. From
Tables 8, 9, and 10, we can see that the efficiency of the algo-
rithms without graph simplification are comparable to that
of NMC, and the algorithms with graph simplification sig-
nificantly shorten the average query time over the algo-
rithms without graph simplification. These results are
consistent with the complexity analysis shown in the previ-
ous sections. Notably, RSS-II� is faster than RCSS� (because
RCSS� needs to compute the cut set in each stratification),
and both of them nearly halve the running time of RSS-II
and RCSS. In addition, it should be noted that the RSSIR1
algorithm is also very fast for the DCR query. This is
because such an algorithm is originally tailored for the DCR
query [3] which can be integrated with an effective pruning
technique as discussed in Section 6.3. However, for the IFE
and EDR queries, it is not clear how to devise an effective
pruning technique for RSSIR1.

Exp-3: Effect of parameter r. We study the effectiveness of
the parameter r in the proposed class-I and class-II estimators
(with graph simplification) for the IFE query using the Con-
dmat dataset. Similar results can be observed for both ERD
and DCR queries and using other datasets. Figs. 3a and 3b
show the relative variances of the class-I and class-II

TABLE 8
Influence Function Evaluation: Comparison of Average Query Time of Different Estimators (Seconds)

RV NMC RSSIR1 BSS-I� BSS-II� BCSS� RSSI RSSII RCSS RSSI� RSSII� RCSS�

ER 0.359 0.356 0.353 0.352 0.359 0.378 0.385 0.396 0.345 0.349 0.351
Facebook 0.201 0.201 0.202 0.203 0.205 0.201 0.204 0.235 0.198 0.191 0.203
Condmat 1.297 1.296 1.258 1.252 1.295 1.241 1.228 1.306 1.220 1.101 1.285
DBLP 8.582 8.654 7.653 7.589 9.619 8.593 8.684 9.628 7.782 6.382 6.586
WikiCon 72.32 74.25 56.87 58.32 57.25 84.19 82.68 86.31 57.23 40.21 45.68
EastUSA 2,018 2,068 1,485 1,461 1,503 2,090 2,088 2,095 1,493 1,021 1,109

TABLE 9
Expected-Reliable Distance Query: Comparison of Average Query Time of Different Estimators (Seconds)

RV NMC RSSIR1 BSS-I� BSS-II� BCSS� RSSI RSSII RCSS RSSI� RSSII� RCSS�

ER 0.405 0.422 0.403 0.401 0.415 0.431 0.427 0.453 0.430 0.423 0.450
Facebook 0.210 0.231 0.208 0.211 0.212 0.216 0.236 0.241 0.208 0.206 0.221
Condmat 1.383 1.387 1.375 1.369 1.381 1.401 1.408 1.410 1.371 1.312 1.339
DBLP 11.33 11.41 8.631 8.525 8.598 11.46 11.43 11.48 8.531 6.725 8.319
WikiCon 93.21 95.26 75.37 72.25 75.31 99.81 95.63 105.3 76.35 50.23 55.69
EastUSA 2,784 2,843 2,016 2,110 2,125 2,882 2,892 2,889 2,025 1,098 1,169

TABLE 10
Distance-Constraint Reachability Query: Comparison of Average Query Time of Different Estimators (Seconds)

RV NMC RSSIR1 BSS-I� BSS-II� BCSS� RSSI RSSII RCSS RSSI� RSSII� RCSS�

ER 0.313 0.302 0.310 0.311 0.315 0.314 0.314 0.329 0.301 0.290 0.305
Facebook 0.200 0.181 0.189 0.185 0.191 0.210 0.206 0.221 0.182 0.178 0.193
Condmat 1.253 1.216 1.255 1.259 1.267 1.320 1.321 1.432 1.218 1.202 1.249
DBLP 7.521 6.541 7.231 7.426 7.502 8.043 8.025 8.126 6.631 6.125 6.389
WikiCon 63.81 45.20 53.32 54.87 55.26 63.89 64.78 70.21 50.87 35.31 40.69
EastUSA 635.2 432.3 569.5 563.8 581.8 641.5 639.8 653.1 578.6 312.3 393.5
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estimators w.r.t. various r. As can be seen in Fig. 3a, the rela-
tive variances of BSS-I� andRSS-I� decrease with increasing r
when r � 5, whereas if r > 5, the curves tend to be smooth.
The reason could be that if r is large, then there will be a large
number of strata generated. Since the sample size is limited,
the algorithm will draw a very small number of samples in
some strata, which may slightly increase the variance of the
estimator in those strata. Based on our observation, r ¼ 5 is a
very good choice for the class-I estimators, which is also used
in the previous experiments. Similarly, for the class-II estima-
tors, we find that the relative variances of BSS-II� and RSS-II�

decrease as r increases when r � 50, and when r 
 50
the curves tend to be smooth. Therefore, r ¼ 50 is a good
choice for the class-II estimators, which is also used in our
previous experiments.

Exp-4: Effect of sample size. As shown in the previous
experiments, RSS-II� and RCSS� outperform the other esti-
mators (in terms of both accuracy and average query time).
Here we study how the sample size affects the accuracy of
these estimators for the IFE query using the Condmat data-
set. Similar results can also be observed for the other queries
and in other datasets. Fig. 4 shows the relative variances of
the estimators under different sample sizes. As can be
observed, the curves of RSS-II� and RCSS� are relatively
smooth when the sample size is no less than 1,000, indicat-
ing that the relative variances of these estimators are rela-
tively robust w.r.t. the sample size.

Exp-5: Scalability testing. In this experiment, we study the
scalability of our best estimators RSS-II� and RCSS�. To this
end, we generate four large synthetic uncertain graphs with
the number of nodes ranging from 200,000 (200k) to 800,000
and the number of edges ranging from 800,000 to 3,200,000
(3.2 m). Also, for each estimator, we set the same parameter
setting as our previous experiments. Fig. 5 depicts the
average query time of the estimators for the IFE query.
Similar results can also be observed for the ERD and
DCR queries. In Fig. 5, the two numbers in the horizontal axis
(e.g., 200k/800k) denote the number of nodes and the num-
ber of edges respectively. From Fig. 5, we find that the aver-
age query time increases as the graph size increases.
Furthermore, the two estimators exhibit a linear growthw.r.t.
the graph size. These results demonstrate that our best

estimators scale linearly w.r.t. the graph size, which are con-
sistent with the time complexity of the estimators.

8 RELATED WORK

Uncertain graph management and mining has been
attracted much attention due to the increasing applications
in biological database [17], communication networks [7],
and influence networks [8]. Notable studies on uncertain
graph management and mining include reliable subgraph
search [4], [18], [19], reachability computation [3], [20], fre-
quent subgraph mining [1], [21], k-nearest neighbor search
[2], reliable clustering [22], as well as subgraph pattern
matching [23]. Generally, all the mentioned uncertain graph
problems are known to be #P-complete, thus finding the
exact solution is impossible in large uncertain graphs unless
P=#P. Therefore, most existing studies, such as [2] and [4],
are based on the NMC estimator. Generally, NMC leads to a
large variance, thus reducing the accuracy of the algorithms.
To reduce the variance, in our preliminary work [13], we
develop several accurate RSS estimators without sacrificing
efficiency for the query evaluation problems on uncertain
graphs. In the present work, we substantially extend our
previous work by integrating an elegant graph simplifica-
tion technique into the RSS estimators. Our graph simplifi-
cation technique not only significantly improves the
accuracy of the estimators, but it also reduce the running
time of the estimators. We apply the proposed techniques to
three different uncertain graph query evaluation problems,
and new experimental studies are also conducted as well.

In addition, it is worth mentioning that Parchas et al. [24]
proposed an interesting algorithm to find the best possible
graph to represent the original uncertain graph, and then
use such a representative possible graph for graph query
and mining tasks. However, their method aims at preserv-
ing the expected vertex degree of the uncertain graph, it is
not clear whether it preserves the other graph structural
properties, thus may not be used for general uncertain
graph query evaluation problems.

9 CONCLUSION

In this paper, we propose several efficient and accurate esti-
mators based on recursive stratified sampling to solving
two types of uncertain graph query evaluation problems.
We show that all of proposed estimators are unbiased and
their variances are smaller than that of the state-of-the-art
estimator. Moreover, the time complexity of all the pro-
posed estimators are the same as that of the state-of-the-art
estimator. In addition, we also integrate an elegant graph
simplification technique into the proposed estimators to fur-
ther improve the accuracy and running time of our estima-
tors. We conduct extensive experiments to evaluate the

Fig. 3. Effect of parameter r.

Fig. 4. Relative variance versus sample size.

Fig. 5. Scalability testing.
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proposed estimators. The results demonstrate the effective-
ness, efficiency, and scalability of our estimators.
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